Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Annu Rev Genomics Hum Genet ; 23: 569-589, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2032558

ABSTRACT

Genome-wide association studies (GWASs) have successfully identified thousands of genetic variants that are reliably associated with human traits. Although GWASs are restricted to certain variant frequencies, they have improved our understanding of the genetic architecture of complex traits and diseases. The UK Biobank (UKBB) has brought substantial analytical opportunity and performance to association studies. The dramatic expansion of many GWAS sample sizes afforded by the inclusion of UKBB data has improved the power of estimation of effect sizes but, critically, has done so in a context where phenotypic depth and precision enable outcome dissection and the application of epidemiological approaches. However, at the same time, the availability of such a large, well-curated, and deeply measured population-based collection has the capacity to increase our exposure to the many complications and inferential complexities associated with GWASs and other analyses. In this review, we discuss the impact that UKBB has had in the GWAS era, some of the opportunities that it brings, and exemplar challenges that illustrate the reality of using data from this world-leading resource.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , United Kingdom
2.
R Soc Open Sci ; 7(11): 200958, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1005759

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 have been implicated in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). The expression of ACE2 and TMPRSS2 in the lung epithelium might have implications for the risk of SARS-CoV-2 infection and severity of COVID-19. We use human genetic variants that proxy angiotensin-converting enzyme (ACE) inhibitor drug effects and cardiovascular risk factors to investigate whether these exposures affect lung ACE2 and TMPRSS2 gene expression and circulating ACE2 levels. We observed no consistent evidence of an association of genetically predicted serum ACE levels with any of our outcomes. There was weak evidence for an association of genetically predicted serum ACE levels with ACE2 gene expression in the Lung eQTL Consortium (p = 0.014), but this finding did not replicate. There was evidence of a positive association of genetic liability to type 2 diabetes mellitus with lung ACE2 gene expression in the Gene-Tissue Expression (GTEx) study (p = 4 × 10-4) and with circulating plasma ACE2 levels in the INTERVAL study (p = 0.03), but not with lung ACE2 expression in the Lung eQTL Consortium study (p = 0.68). There were no associations of genetically proxied liability to the other cardiometabolic traits with any outcome. This study does not provide consistent evidence to support an effect of serum ACE levels (as a proxy for ACE inhibitors) or cardiometabolic risk factors on lung ACE2 and TMPRSS2 expression or plasma ACE2 levels.

3.
Head Neck ; 42(10): 2779-2781, 2020 10.
Article in English | MEDLINE | ID: covidwho-627638

ABSTRACT

Respiratory particle generation and dispersal during nasoendoscopy and swab testing is studied with high-speed video and laser light illumination. Video analysis reveals droplet formation in three manoeuvres during nasoendoscopy - sneezing, vocalization, and nasal decongestion spray. A capillary bridge of mucus can be seen when a nasoendoscope exits wet nares. No droplet formation is seen during oral and nasopharyngeal swab testing. We outline the following recommendations: pull the face mask down partially and keep the mouth covered, only allowing nasal access during nasoendoscopy; avoid nasal sprays if possible; if nasal sprays are used, procedurists should be in full personal protective equipment prior to using the spray; withdrawal of swabs and scopes should be performed in a slow and controlled fashion to reduce potential dispersion of droplets when the capillary bridge of mucus breaks up.


Subject(s)
COVID-19 Testing , Endoscopy , Mucus , Nasal Cavity , Phonation/physiology , Sneezing/physiology , Administration, Intranasal , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional , Nasal Sprays , Personal Protective Equipment
SELECTION OF CITATIONS
SEARCH DETAIL